

International ICFA mini-Workshop on **NOnlinear dynamics and Collective Effects in particle beam physics** Arcidosso, Italy / 19 - 22 September 2017



"Potentialities and Compromises in the Design of Diffraction Limited Storage Rings"

> Richard Walker Diamond Light Source, UK

> > r.p.walker@diamond.ac.uk www.diamond.ac.uk

## 1. What is the "Diffraction Limit" ?

... when, for a given photon energy, the properties of the radiation are dominated by the intrinsic properties of the emitted photons, not the electron beam.

Then, the radiation *Brightness* is not degraded by the electron beam emittance and the radiation is *transversely coherent*.



Brightness is usually defined as follows:

$$\mathcal{B} = \frac{F}{4\pi^2 \Sigma_x \Sigma_y \Sigma_{x'} \Sigma_{y'}}$$

F = total flux per unit spectral bandwidth

where the effective source sizes and divergences are convolutions between the electron and intrinsic photon sizes and divergences:

$$\Sigma_{x} = \left(\sigma_{x}^{2} + \sigma_{R}^{2}\right)^{1/2}, \quad \Sigma_{y} = \left(\sigma_{y}^{2} + \sigma_{R}^{2}\right)^{1/2}$$
$$\Sigma_{x'} = \left(\sigma_{x'}^{2} + \sigma_{R'}^{2}\right)^{1/2}, \quad \Sigma_{y'} = \left(\sigma_{y'}^{2} + \sigma_{R'}^{2}\right)^{1/2}$$

This is an approximation, based on both electrons and photons having <u>Gaussian distributions</u>. True for electrons, not for photons ...

Using emittances and beta functions:

- for the electrons:  $\sigma_{x,y} = \sqrt{\varepsilon_{x,y} \beta_{x,y}}, \quad \sigma_{x',y'} = \sqrt{\varepsilon_{x,y} \beta_{x,y}}$ 

- for the photons:

$$\sigma_{R} = \sqrt{\varepsilon_{R} \beta_{R}}, \quad \sigma_{R'} = \sqrt{\varepsilon_{R} / \beta_{R}}$$

$$\mathcal{B} = \frac{F}{4\pi^2 \left(\varepsilon_x^2 + \varepsilon_R^2 + \varepsilon_x \varepsilon_R \left(\frac{\beta_x}{\beta_R} + \frac{\beta_R}{\beta_x}\right)\right)^{1/2} \left(\varepsilon_y^2 + \varepsilon_R^2 + \varepsilon_y \varepsilon_R \left(\frac{\beta_y}{\beta_R} + \frac{\beta_R}{\beta_y}\right)\right)^{1/2}}$$

Brightness is maximized when  $\beta_x = \beta_y = \beta_R$ , then:

$$\mathcal{B} = \frac{F}{4\pi^2 (\varepsilon_x + \varepsilon_R) (\varepsilon_y + \varepsilon_R)}$$

So far so good ...

... but, how do you define the photon properties  $\sigma_R, \sigma_{R'}, \varepsilon_R, \beta_R$ ?

|                                                                          | $\sigma_{R'}$       | $\sigma_{\scriptscriptstyle R}$ | $\varepsilon_{R} = \sigma_{R} \sigma_{R'}$ | $\beta_{R} = \sigma_{R}/\sigma_{R'}$ |   |
|--------------------------------------------------------------------------|---------------------|---------------------------------|--------------------------------------------|--------------------------------------|---|
| Kim (NIM 1986) <sup>†</sup>                                              | $\sqrt{\lambda/L}$  | $\sqrt{\lambda L}/4\pi$         | $\lambda/4\pi$                             | $L/4\pi$                             | 1 |
| Kim (PAC 1987)                                                           | $\sqrt{\lambda/2L}$ | $\sqrt{2\lambda L}/4\pi$        | $\lambda/4\pi$                             | $L/2\pi$                             | 2 |
| Borland (IPAC 2012)<br>Hettel & Borland (PAC 2013)<br>Hettel (IPAC 2014) | $\sqrt{\lambda/2L}$ | $\sqrt{2\lambda L}/2\pi$        | $\lambda/2\pi$                             | $L/\pi$                              |   |
| Huang (IPAC 2013)                                                        | $\sqrt{\lambda/2L}$ | $\sqrt{2\lambda L}/4\pi$        | $\lambda/4\pi$                             | $L/2\pi$                             | 2 |
| Lindberg & Kim (PRSTAB 2015)                                             | $\sqrt{\lambda/4L}$ | $\sqrt{\lambda L}/2\pi$         | $\lambda/4\pi$                             | $L/\pi$                              | 4 |
| Liu (IPAC 2017)                                                          | $\sqrt{\lambda/2L}$ | $\sqrt{2\lambda L}/2\pi$        | $\lambda/2\pi$                             | $L/\pi$                              | E |

#### so which is correct ? (and does it matter ?) ...

<sup>+</sup> also in the X-ray Data Booklet, <u>http://xdb.lbl.gov/</u>

The best available definition of Brightness is based on the Wigner distribution :

$$W(x, x', y, y') = \frac{2\varepsilon_o c}{h \lambda^2} \frac{I}{e} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_x^* \left( x' + \frac{\xi_x}{2}, y' + \frac{\xi_y}{2} \right) E_x \left( x' - \frac{\xi_x}{2}, y' - \frac{\xi_y}{2} \right) * \exp\left( -i \frac{2\pi}{\lambda} \left( x \xi_x + y \xi_y \right) \right) d\xi_x d\xi_y$$



I. Bazarov, PRSTAB 15, 050703 (2012)

The disagreement over how to approximate this with a simple formula is not surprising:

- the photon distribution is not Gaussian,
- it is <u>not</u> separable into f(x), f(y),
- the <u>projected</u> distributions (which are often used) are not the same as the <u>cuts</u> along any given axis.

**Projected intensity distributions** 



Cuts in phase space



On the other hand ..

from the definition of the Wigner function it follows directly, for zero emittance:

$$W_0 = rac{F}{\left(\lambda/2
ight)^2}$$

and equating this with the Brightness formula:

$$\mathcal{B} = \frac{F}{4\pi \,\varepsilon_R^2}$$

we have by definition: 
$$arepsilon_R=\lambda/4\pi$$

This also leads to a definition of the coherent flux as:

$$F_{coh.} = \mathcal{B}\left(\frac{\lambda}{2}\right)^2$$

and the coherent fraction = 
$$rac{F_{coh.}}{F}$$

which for zero emittance, = 1

As an aside, note that one can't use:

$$F_{coh.} = \mathcal{B}\left(\frac{\lambda}{2}\right)^2$$

together with the approximate formula with  $~~ arepsilon_R = \lambda/2\pi$ 

otherwise one obtains the ridiculous result:

$$\frac{F_{coh.}}{F} = \frac{1}{4}$$



#### So which approximate formula is more accurate ?





#### $\rightarrow$ The best approximation therefore appears to be:

|                                                                          | $\sigma_{R'}$       | $\sigma_{\scriptscriptstyle R}$ | $\varepsilon_{R} = \sigma_{R} \sigma_{R'}$ | $\beta_{R} = \sigma_{R}/\sigma_{R'}$ |   |
|--------------------------------------------------------------------------|---------------------|---------------------------------|--------------------------------------------|--------------------------------------|---|
| Kim (NIM 1986) <sup>†</sup>                                              | $\sqrt{\lambda/L}$  | $\sqrt{\lambda L}/4\pi$         | $\lambda/4\pi$                             | $L/4\pi$                             | 1 |
| Kim (PAC 1987)                                                           | $\sqrt{\lambda/2L}$ | $\sqrt{2\lambda L}/4\pi$        | $\lambda/4\pi$                             | $L/2\pi$                             | 2 |
| Borland (IPAC 2012)<br>Hettel & Borland (PAC 2013)<br>Hettel (IPAC 2014) | $\sqrt{\lambda/2L}$ | $\sqrt{2\lambda L}/2\pi$        | $\lambda/2\pi$                             | $L/\pi$                              | E |
| Huang (IPAC 2013)                                                        | $\sqrt{\lambda/2L}$ | $\sqrt{2\lambda L}/4\pi$        | $\lambda/4\pi$                             | $L/2\pi$                             | 2 |
| Lindberg & Kim (PRSTAB 2015)                                             | $\sqrt{\lambda/4L}$ | $\sqrt{\lambda L/2\pi}$         | $\lambda/4\pi$                             | $L/\pi$                              | 4 |
| Liu (IPAC 2017)                                                          | $\sqrt{\lambda/2L}$ | $\sqrt{2\lambda L}/2\pi$        | $\lambda/2\pi$                             | $L/\pi$                              | 3 |

Note that the Gaussian model is only an <u>approximation</u>:

- ... it's not 100% accurate
- ... it takes no account of detuning
- ... it takes no account of energy spread

And in any case:

- is peak Brightness the best figure-of-merit for experiments ?, or would some sort of average Brightness be more appropriate ?
- Brightness is not the only parameter:

 $\varepsilon x = 100 \text{ pm}, \varepsilon y = 1 \text{ pm}$  gives a factor 3.5 more Brightness at 0.1 nm than  $\varepsilon x = \varepsilon y = 50 \text{ pm}$ , but there are some advantages to '*round beams*' ...

... better match to the quality of optics; better match to circular zone plates ... reduces Intra Beam Scattering and increases Touschek lifetime.

## 2. How to approach the Diffraction Limit ?



## How to reduce the electron beam emittance ?



... emitting photons in a bending magnet or insertion device excites betatron oscillations

$$\varepsilon_x = C_q \frac{\gamma^2}{J_x} \frac{\oint H(s)/\rho(s)^3 ds}{\oint 1/\rho(s)^2 ds} \qquad H(s) = \gamma \eta^2 + 2\alpha \eta \eta' + \beta \eta'^2$$

1) Reduce the dispersion,  $\eta(s)$  and  $\eta'(s)$ , in the bending magnets



#### Multi Bend Achromat (MBA)



$$\varepsilon_x \sim \frac{Energy^2}{N_{bend}^3}$$

(provided other conditions can be satisfied)

#### MBA Lattices have been studied for many years ...

| Year | Ring    | E<br>(GeV) | C<br>(km) | MBA   | ε <sub>xo</sub>         | Reference                                          |
|------|---------|------------|-----------|-------|-------------------------|----------------------------------------------------|
| 1993 | ROSY-II | 3          | 0.2       | 4BA   | 3 nm                    | Einfeld & Plesko, PAC'93                           |
| 1994 | SLS     | 2.1        | 0.25      | 7BA   | 3.2 nm                  | Joho et al., EPAC'94                               |
| 1995 | DIFL    | 3          | 0.4       | 7BA   | 0.56 nm                 | Einfeld et al., PAC'95                             |
| 2000 | USR     | 7          | 2         | 4/5BA | 0.3 nm                  | Ropert et al., EPAC'00                             |
| 2005 | XPS7    | 7          | 1.1       | 6BA   | 78 pm                   | Borland, NIM 2006                                  |
| 2006 |         | 6          | 2.0       | 10BA  | 34 pm                   | Tsumaki & Kumagai, NIM 2006                        |
| 2008 | MAX-IV  | 3          | 0.53      | 7BA   | 0.31 nm                 | Eriksson et al, NIM 2008                           |
| 2009 | USR7    | 7          | 3.16      | 10BA  | 30 pm                   | Borland, AIP Proc.                                 |
| 2011 | PEP-X   | 4.5        | 2.2       | 7BA   | 29 pm                   | Nosochkov et al., IPAC'12                          |
| 2012 | τUSR    | 9          | 6.3       | 7BA   | 2 pm<br>(full coupling) | Borland, ICFA Beam Dynamics<br>Newsletter 57, 2012 |

... before finally becoming a reality in MAX-IV, the first of a new generation of storage ring light sources.



1<sup>st</sup> beam: 25/08/15



#### New Rings based on MBA Lattices

| Ring   | Country  | E (GeV) | C (m) | Lattice | Emittance | Status                  |
|--------|----------|---------|-------|---------|-----------|-------------------------|
| MAX-IV | Sweden   | 3       | 528   | 7BA     | 330 pm    | operating               |
| Sirius | Brazil   | 3       | 518   | 5BA     | 250 pm    | construction (2018)     |
| ILSF   | Iran     | 3       | 528   | 5BA     | 275 pm    | pre-construction (2025) |
| CANDLE | Armenia  | 3       | 269   | 4BA     | 435 pm    | study                   |
| HALS   | China    | 2       | 648   | 6BA     | 18 pm     | study                   |
| HEPS   | China    | 6       | 1260  | 7BA     | 59 pm     | study; R&D              |
| KEK-LS | Japan    | 3       | 571   | 8BA     | 130 pm    | study                   |
| SLiT-J | Japan    | 3       | 354   | 4BA     | 920 pm    | study                   |
| SPS-II | Thailand | 3       | 321   | 6BA     | 970 pm    | study                   |
| TURKAY | Turkey   | 3       | 477   | 4BA     | 510 pm    | study                   |

#### Upgraded Rings based on MBA Lattices

| Ring        | Country     | E (GeV) | C (m) | Lattice | Emittance | Status              |
|-------------|-------------|---------|-------|---------|-----------|---------------------|
| ESRF-EBS    | France      | 6       | 844   | 7BA     | 140 pm    | construction (2020) |
| APS-U       | USA         | 6       | 1104  | 7BA     | 46 pm     | pre-construction    |
| ALS-U       | USA         | 2       | 197   | 9BA     | 109 pm    | study; R&D          |
| Diamond-II  | UK          | 3       | 562   | 6BA     | 125 pm    | study               |
| ELETTRA 2.0 | Italy       | 2       | 259   | 6BA     | 250 pm    | study               |
| PETRA-IV    | Germany     | 6       | 2304  | 7BA     | 10-30 pm  | study               |
| SLS-II      | Switzerland | 2.4     | 288   | 7BA     | 138 pm    | study               |
| SOLEIL-II   | France      | 2.75    | 354   | 6/7BA   | ~ 200 pm  | study               |
| Spring-8-II | Japan       | 6       | 1435  | 5BA     | 140 pm    | study; R&D          |
| SSRF-U      | China       | 3       | 432   | 7BA     | 203 pm    | study               |

## The Quest for the Brightest Ring .....

MBA Lattices are a new generation of synchrotron light source:



The leap from the 3<sup>rd</sup> to the 4<sup>th</sup> generation becomes clearer on this plot:



## So why has it taken so long ?! ...



## ... or put simply:



### So what has allowed MAX-IV and the 4<sup>th</sup> Generation to happen?

- Crucial has been the development of better accelerator physics modelling and optimization methods, giving greater confidence in designs.
- New technology ?

- NEG coating ? .. used successfully in MAX-IV, and will be used in many future projects, but may not be strictly necessary in all cases e.g. ESRF-EBS has vey little NEG coating.

- compact high gradient magnets, yes (but the technology is not that revolutionary).
 - integrated magnets ... used successfully in MAX-IV, but not being taken up for other projects.

- Other design choices such as low frequency RF and no bending magnet ports have helped simplify the design of MAX-IV, but may not be necessary in all cases.
- Above all ... having the confidence (nerve) to do it !

## **Engineering Developments**

#### **MAX-IV Integrated Magnets**







quad. r<sub>0</sub>=12.5 mm 40 T/m

machined out of solid iron block, up to 3.4m long:

- reduces vibrations
- high accuracy of relative alignment
- simplifies installation

but:

- complicates magnetic measurement
- difficult for subsequent interventions

M. Johansson, JSR 21 (2014) 884.

#### MAX-IV Vacuum System



<image>

- ~ 20 m long vacuum string
- Cu/stainless steel
- inside radius 11 mm
- 100% NEG coated
- ex-situ bakeout only
- no bending magnet ports

Al-Dmour et al, JSR 21 (2014) 878. Al-Dmour et al., IPAC17

#### **ESRF-EBS Magnets**

#### longitudinal gradient permanent magnet dipoles -



#### dipole-quadrupole magnets 0.57T, 37 T/m





high gradient quadrupole r<sub>0</sub> = 12.7 mm, 91 T/m



(APS-U, r<sub>0</sub> = 13 mm, 98 T/m)

#### **ESRF-EBS Girders**



ESRF-EBS "mock-up": one complete cell, 4 girders, under vacuum, Sep. 2017.

**Lattice Development - Other ways to reduce emittance:** 



## 2) Optimize the term *H*/p, using Longitudinal Gradient Bends

i.e. field is large,  $\rho$  small, when dispersion small; field is small,  $\rho$  large, when dispersion increases.

3) Provide extra bending ρ(s) with low dispersion, using Damping Wigglers
e.g. as employed at PETRA-III and NSLS-II; can be effective when the main bending field is relatively low; they also help reduce IBS, but
- increase RF power requirements, take up valuable straight section space, give rise to a high power loading on the vacuum vessels, increase energy spread and complicate beam dynamics.

# 4) Increase the "damping partition" Jx, using gradient dipole magnets, or gradient (Robinson) wigglers - can reduce emittance by ~x2, but this will increase energy spread by √2

#### **MAX-IV 7BA**



## ESRF "hybrid-7BA"



gradient dipoles (blue), quadrupoles (red), sextupoles (green), octupoles (brown)

NB] sextupoles distributed throughout the cell (similarly in the Sirius 5BA lattice)



- "dispersion bumps" formed from the outer pairs of dipole
- sextupoles only in the dispersion bumps, with appropriate phase difference
- no sextupoles in the central "FODO" region

L. Favacque et al., IPAC 2013

## Variants of the "hybrid-7BA":

**Compromise between lowest emittance and increased capacity for Insertion Devices** 





T. Honda, IPAC17

## Anti-Bends or Reverse Bends<sup>+</sup>

- an extra "knob" to "disentangle" dispersion and beta functions and so allow better optimization of lattice functions in order to minimize emittance.

• Incorporated in the proposed **SLS-II** lattice: x 4 reduction in emittance



$$\sum_{i} |\theta_{i}| = 585^{\circ}$$

A. Streun, 2<sup>nd</sup> LERD workshop, Dec. 2016

• Incorporated in the candidate APS-U lattice



reverse bends (cyan), (actually offset quadrupoles) reduces ex 67 to 42 pm *M. Borland et al., NAPAC 2016* 

+ J.P. Delahaye and J.P. Potier, PAC 1989
 A. Streun, NIM A737 (2014) 148.
 A. Streun and A. Wrulich, NIM A770 (2015) 98.

## **Phase Space Exchange Lattice<sup>†</sup>**



- one of the options being studied for the PETRA-IV Upgrade
  - produces a round-beam with εx=εγ
     ~ 25pm

I. Agapov et al., IPAC17



+ R. Talman, Phys. Rev. Lett., 74 (1995) 1590. S. Henderson, PAC '99

- horizontal chromaticity corrected in one part of the ring , vertical in the other ...
- large dynamic aperture
- off-axis injection possible

## **Round Beams**

e.g.

- ALS-U  $\varepsilon x = \varepsilon y = 70 \text{ pm}$
- APS-U timing mode  $\varepsilon x = \varepsilon y = 32 \text{ pm}$
- PETRA-IV  $\varepsilon x = \varepsilon y \approx 10-30 \text{ pm}$

#### How?

- emittance exchange (PETRA-IV)
- horizontal field wigglers (Bogomyagkov et al, LER Workshop, Frascati 2014)
- sitting on the linear coupling resonance; on-axis injection only
- coupling resonance excitation with dynamic skew-quadrupole (P. Kuske, Workshop on Round Beams)

Workshop on Round Beams, SOLEIL, 14-15<sup>th</sup> June 2017

https://www.synchrotron-soleil.fr/fr/evenements/mini-workshop-round-beams

See talks on Thursday morning: *"Production of round beams in storage ring light sources", P. Kuske "Production of round beams at PETRA IV", I. Agapov* 

## **3. 4GSRs involve compromises**

- lower emittance vs. cost (larger circumference, more complex technology, more complex injector especially for on-axis injection)
- lower emittance vs. risk
- lower emittance vs. short bunch lengths (may need low frequency RF and/or harmonic cavities to lengthen the bunch for lifetime)
- lower emittance vs. more insertion devices
- lower emittance vs. flexibility (may have to give up special lattice modifications which are incompatible with low emittance e.g. double mini-β schemes, femtoslicing etc.)
- smaller apertures might restrict the range of photon energies:
  - ... difficult to extract IR & UV
  - ... difficult to extract vertically/circularly polarized radiation at low photon energies

## **Compromise between lower emittance and larger Dynamic Aperture**



dynamic aperture mm<sup>2</sup>

## **On-axis injection: "Swap-out"**<sup>+</sup>



- each injected bunch replaces an existing bunch of the stored beam, with full charge
- extracted bunch can be re-used (with an accumulator ring) or dumped
- dynamic aperture need only accommodate the injected beam emittance, not the injected beam oscillation
- allows the possibility of compromising dynamic aperture to achieve lower emittance
- horizontal physical apertures can also be reduced, advantageous for IDs
- stringent requirements on kicker/pulser pulse profiles and stability

† L. Emery & M. Borland, PAC03

## Swap-out injection will be used for ALS-U and APS-U

ALS-U will swap-out <u>bunch trains</u>, with an accumulator ring



- APS-U will swap out <u>single</u> <u>bunches</u>, and dump them
- fast kicker for 324-bunch mode,< 20 ns pulse length</li>
- high charge for 48-bunch mode,
   15 nC per bunch

in both cases, prototype stripline kickers and pulsers meet the specifications:



## **On-axis injection: longitudinal plane**

- many schemes, some very new
- all involve injecting off-phase, and off-energy, in-between circulating bunches,
- $\rightarrow$  kicker pulse duration < bunch spacing
- $\rightarrow$  low RF frequency and fast kicker magnets



## 4. The Future ...



"*Prediction is very difficult, especially about the future*", Niels Bohr.

#### Is there an ultimate limit ???

There appears to be no fundamental physical limit to reaching the X-ray diffraction limit:

- the "quantum limit" is much smaller,  $\varepsilon_{x,y} \approx \frac{C_q}{4} \frac{\langle \beta_{x,y} \rangle}{J_{x,y} \rho} < 0.3 \text{ pm}$ 

-  $\varepsilon_y$  = 2-10 pm <u>vertical</u> emittance is routine and sub-pm has been measured, e.g.  $\varepsilon_y$  = 0.9 ± 0.3 pm measured at the Australian Synchrotron *K.P. Wootton et al., PRSTAB 17, 112802 (2014)* 

The challenge is to reach the desired emittance in a reasonable circumference ..

#### Can the technology be pushed further ?



R.P. Walker: Potentialities and Compromises in the Design of Diffraction Limited Storage Rings

## A possible future direction ...

"Beyond MAX-IV" P. Tavarez, Low Emittance Ring Workshop, Lund, Nov. 2016



- 3 GeV, C=528 m
- 19 BA
- ε<sub>xo</sub> = 16 pm
- ~ 200 T/m quadrupoles, r<sub>o</sub> = 5.5 mm ... permanent magnets
- IBS will be severe ... multiple RF frequencies

## Storage Ring Light Sources have a bright future ...

thanks for your attention !